Prosiding Seminar Nasional Matematika dan Terapannya (Senamantra) FMIPA Universitas Jenderal Soedirman, Purwokerto, 21 Desember 2022 Vol. 3 (2022), Hal. 1-16 ISSN (Cetak) : 2550-0384; ISSN (*Online*) : 2550-0392

SOME PROPERTIES OF THE GENERALIZED FUNCTION WEIGHTED METRIC SPACES

Budi Nurwahyu*

Department of Mathematics, Hasanuddin University, Tamalanrea KM 10, Makassar, Indonesia. budinurwahyu@unhas.ac.id ,

Abstract. This paper introduces a function weighted b-metric space (F b-metric space) as a generalization of the function weighted metric (F-metric space). We also propose and prove some properties of the F b-metric space for logarithmic-like function.

Keywords. logarithmic-like function, b-metric space, function weighted metric, function weighted b- metric.

Abstrak. Artikel ini memperkenalkan ruang *b*-metrik terboboti fungsi (ruang *b*-metrik \mathfrak{F}) sebagai suatu perumuman dari ruang metrik terboboti fungsi (ruang *F*-metrik). Artikel ini mengajukan dan membuktikan beberapa sifat ruang *b*-metrik \mathfrak{F} untuk fungsi mirip logaritma.

Kata Kunci. Fungsi mirip logaritma, ruang *b*-metrik, metrik terboboti fungsi, *b*-metrik terboboti fungsi.

1. INTRODUCTION

The b-space metric was introduced by Bakhtin in 1989 [1] and used by Czerwik in 1993 for the fixed point of contracting Banach [2]. Dung in 2019 made the b-metric space metrizable on a certain metric space [3]. George [2015] introduced the rectangular b-metric space which is a generalization of the rectangular metric space [4]. The rectangular b-metric space has been introduced by Branciari (2000) on the existence of points in the Banach contract function and the Kannan contraction type [5]. Khamsi (2010) has generalized a rectangular metric space that replaces the conditions of rectangular inequalities into inequalities for n-angular [6]. One of the generalizations of the other b-metric spaces is the s-relaxed b-metric space [7]. In 2018, Jleli and Samet introduced a generalization of the metric space called the function weighted metric (F-metric) space [8].

^{*}Penulis Korespondensi

The main goal of this paper is to introduce the function weighted b- metric (the F b-metric space) which is a generalization of the F-metric space and reveal several properties related to the properties of the F b-metric.

2. PRELIMINARIES

In order to work out the main results, the following are some of the definitions and examples needed.

Definition 1. (see[1,2]) Let X be a non-empty set and a real number $b \ge 1$. Let $d: X \times X \to [0, \infty)$ be a function, then (X, d) is called *b*-metric space if the following conditions are satisfied

1. d(x, y) = 0 if and only if x = y2. d(x, y) = d(y, x)3. $d(x, y) \le k(d(x, z) + d(z, y))$

for all $x, y, z \in X$.

Definition 2. (see [8]) Let $f: (0, +\infty) \to \mathbb{R}$ be a function, non-decreasing, f is *called logarithmic-like* if it satisfies

$$\lim_{t\to 0} f(t) = -\infty.$$

We denote

 $F = \{ f: (0, +\infty) \to \mathbb{R} \mid f \text{ non} - \text{decreasing, and logarithmic} - \text{like} \}.$ So we have if $f \in F$, then for any r > 0 and $K \ge 0$, there is $\delta > 0$, so that for every $0 < s < \delta$, it holds f(s) < f(r) - K.

Example 1. (see [8]) Some examples for logarithmic-like function are $f(x) = \ln x$, $f(x) = x - \frac{1}{x}$, and $f(x) = x - e^{\frac{1}{x}}$, for $x \in (0, +\infty)$.

Definition 3. (see [8]). Let *X* be a non-empty set, $f \in F$, $0 \le K < +\infty$. A mapping $\rho: X \times X \to [0, +\infty)$ is called a *function weighted metric* (*F* –*metric*), if for all $x, y \in X$, ρ satisfies the following conditions:

A1.
$$\rho(x, y) = 0$$
, if and only if $x = y$,
A2. $\rho(x, y) = \rho(y, x)$,
A3. $\rho(x, y) > 0$ then $f(\rho(x, y)) \le f(\sum_{j=0}^{N-1} \rho(a_j, a_{j+1}) + K)$,

for every $\{a_0 = x, a_1, a_2, ..., a_N = y\} \subset X$ and $N \in \mathbb{N}, N \ge 2$. The pair (X, ρ) is called a *function weighted metric space* (*F-metric space*).

In the following, we define a function weighted *b*-metric which is a generalization of the function weighted metric, as follows:

Definition 4. Let *X* be a non-empty set, $f \in F$, $0 \le K < +\infty$, $b \ge 1$. A mapping $\rho: X \times X \to [0, +\infty)$ is called a function weighted *b*-metric ($F \ b - metric$), if for all $x, y \in X$, ρ satisfies the following conditions: B1. $\rho(x, y) = 0$, if and only if x = y, B2. $\rho(x, y) = \rho(y, x)$, B3. $\rho(x, y) > 0$ then $f(\rho(x, y)) \le f(\sum_{j=0}^{N-1} b^j \rho(a_j, a_{j+1}) + K,$ for every $\{a_0 = x, a_1, a_2, ..., a_N = y\} \subset X$ and $N \in \mathbb{N}, N \ge 2$. The pair (X, ρ) is called a *function weighted b-metric space* ($F \ b - metric$

space).

Remarks. If b = 1, then the above definition is the definition of the function weighted metric.

However, the function weighted *b*-metric becomes *b*-metric if $f(x) = \ln x$, K = 0, and N = 2. Also the *b*-metric space is not necessarily a function of the weighted metric space. This can be shown in the following Examples.

Example 2. Let X = R be a set of all real numbers. Define a function $\rho(x, y) = |x - y|^p$ with $p \ge 2$ and $x, y \in X$, then ρ is a b-metric with $b = 2^{p-1}$. However, ρ is not a function weighted metric, this can be shown as follows. Suppose ρ is a function weighted metric. It means that there is a function $f \in F$ that satisfies the of axiom A3 of the definition of function weighted metric. We choose $t_j \in X$ and take any $m \in \mathbb{N}$. Define $t_j = \frac{2j}{m}$ for j = 0, 1, 2, ..., m - 1. From the of axiom A3, we have

$$f(\rho(0,2)) \le f(\sum_{j=0}^{m-1} |t_j - t_{j+1}|^p) + K = f(\sum_{j=0}^{m-1} \left|\frac{2j}{m} - \frac{2(j+1)}{m}\right|^p) + K$$
$$= f(\frac{1}{m^p} \sum_{j=0}^{m-1} |2j - 2(j+1)|^p) + K = f(\frac{2^p}{m^{p-1}}) + K.$$
(1)

So, from (1) we get

$$f(4) = f(\rho(0,2)) \le f\left(\frac{2^p}{m^{p-1}}\right) + K.$$
 (2)

Since *f* has a *logarithm-like property*, then we have $\frac{2^p}{m^{p-1}} \to 0$, as $m \to +\infty$ and consequently from (2) we have $f(\frac{2^p}{m^{p-1}}) + K \to -\infty$, as $m \to +\infty$, which is a contradiction, because $f\left(\frac{2^p}{m^{p-1}}\right) \ge f(4) - K$. So, ρ is not a function weighted metric. However, ρ is a function weighted *b*-metric. It is shown as follows. To prove condition B3, we use a property

$$|x - y|^p \le 2^{p-1}(|x - a|^p + |a - y|^p).$$

Let $N \in \mathbb{N}, N \ge 2$, and a set $\{a_1 = x, a_2, a_3, \dots, a_N = y\} \subset X$. Then we have $\rho(x, y) = |x - y|^p$

$$= e^{\alpha} |a_1 - a_2 + a_2 - a_3 + a_3 - a_4 + a_4 - \dots + a_{N-1} - a_N|^p$$

$$\leq (2^{p-1} |a_1 - a_2|^p + (2^{p-1})^2 |a_2 - a_3|^p + (2^{p-1})^3 |a_3 - a_4|^p + \dots + (2^{p-1})^{N-1} |a_{N-1} - a_N|^{p-1})$$

$$= \sum_{j=1}^{N-1} (2^{p-1})^j |a_j - a_{j+1}|^p = \sum_{j=1}^{N-1} (2^{p-1})^j \rho(a_j, a_{j+1}).$$

So, we obtain

$$\rho(x,y) \leq \sum_{j=1}^{N-1} (2^{p-1})^j \rho(a_j, a_{j+1}).$$

Thus ρ is a function weighted *b*-metric with $f(x) = \ln x$, $b = 2^{p-1}$ and K = 0.

Example 3. Let X = [0,1], define a function $\rho(x, y) = |x - y|^2 e^{|x-y|}$ for all $x, y \in X$. To prove condition B3, we use a property

$$|x - y|^2 \le 2(|x - a|^2 + |a - y|^2).$$

Let
$$N \in \mathbb{N}, N \ge 2$$
, and a set $\{a_1 = x, a_2, a_3, ..., a_N = y\} \subset X$. Then we have
 $\rho(x, y) = |x - y|^2 e^{|x - y|}$
 $= |a_1 - a_2 + a_2 - a_3 + ... + a_{N-1} - a_N|^2 e^{|a_1 - a_2 + a_2 - a_3 + ... + a_{N-1} - a_N|}$
 $\le (2|a_1 - a_2|^2 + (2)^2|a_2 - a_3|^2 + ...$
 $+ (2)^{N-1}|a_{N-1} - a_N|^2) e^{|a_1 - a_2 + a_2 - a_3 + ... + a_{N-1} - a_N|}$
 $\le (2|a_1 - a_2|^2 e^{|a_1 - a_2| + |a_2 - a_3 + a_{N-1} - a_N|}$
 $+ (2)^2|a_2 - a_3|^2 e^{|a_2 - a_3| + |a_1 - a_2 + a_3 - a_N|} + ...$
 $+ (2)^{N-1}|a_{N-1} - a_N|^2) e^{|a_{N-1} - a_N| + |a_1 - a_{N-1}|}$
 $= (2|a_1 - a_2|^2 e^{|a_1 - a_2| + |a_2 - a_N|}$
 $+ (2)^2|a_2 - a_3|^2 e^{|a_2 - a_3| + |a_1 - a_2 + ... + a_{N-1} - a_N|} + ...$
 $+ (2)^{N-1}|a_{N-1} - a_N|^2 e^{|a_{N-1} - a_N| + |a_1 - a_2 + a_{N-1} - a_N|})$
Since $a_0 = x, a_2, a_3, ..., a_N = y \in [0, 1]$, then we have
 $\rho(x, y) = |x - y|^2 e^{|x - y|}$
 $\le 2|a_1 - a_2|^2 e^{|a_1 - a_2|} e^2 + (2)^2|a_2 - a_3|^2 e^{|a_2 - a_3|} e^2 + ...$
 $+ (2)^{N-1}|a_{N-1} - a_N|^2 e^2$
 $= e^2(2|a_1 - a_2|^2 e^{|a_1 - a_2|} + (2)^2|a_2 - a_3|^2 e^{|a_2 - a_3|} + ...$
 $+ (2)^{N-1}|a_{N-1} - a_N|^2)$
 $= e^2 \left(\sum_{j=1}^{N-1} (2)^j |a_j - a_{j+1}|^2 e^{|a_j - a_{j+1}|}\right)$
(3)

So, from (3) we obtain

$$\rho(x,y) \le e^2 \sum_{j=1}^{N-1} (2^{p-1})^j \rho(a_j, a_{j+1}).$$

So, we have

$$\ln \rho(x, y) \le 2 + \ln \sum_{j=1}^{N-1} (2^{p-1})^j \rho(a_j, a_{j+1}).$$

This is a function weighted b-metric with the function $f(x) = \ln x$, $b = 2^{p-1}$ and K = 2.

From Definition 2, replace A3 with the of A3* as follows: there is $\gamma > 0$ such that if $\rho^*(x, y) > 0$ holds,

$$\rho^*(x,y) \leq \gamma \sum_{j=1}^{N-1} \rho^*(a_j, a_{j+1}), a_1 = x, \qquad a_N = y.$$

Where ρ^* is known as a *s*-relaxed metric [8]. It is clear that ρ^* satisfies B3 with $f(x) = \ln x$, x > 0, b = 1 and $K = \ln \gamma$. So, s-relaxed metric is a function weighted b- metric.

Example 4. Let *X*=[1,2], define the function

$$\rho(x, y) = \begin{cases} 0, & \text{If } x = y \\ 2^{|x-y|}, & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$. For conditions B1 and B2, it is clearly satisfied. To prove condition B3, choose a function $f(t) = t + 1 - \frac{1}{t}$ for any $t \in (0, +\infty)$, it is clear that $f \in \mathfrak{F}$.

Let (a_n) be any finite sequence in X = [1,2], where $(a_1, a_N) = (x, y)$ for all $x, y \in X$, and $\rho(x, y) > 0$, for n = 1, 2, 3, ..., N. So, we have

$$3 + f\left(\sum_{j=1}^{N-1} b^{j} \rho(a_{j}, a_{j+1})\right) - f(\rho(x, y))$$

$$= 3 + 1 + \sum_{j=1}^{N-1} b^{j} \rho(a_{j}, a_{j+1}) - \frac{1}{\sum_{j=1}^{N-1} b^{j} \rho(a_{j}, a_{j+1})} - \rho(x, y) - 1 + \frac{1}{\rho(x, y)}$$

$$= 3 + \sum_{j=1}^{N-1} b^{j} 2^{|a_{j} - a_{j+1}|} - \frac{1}{\sum_{j=1}^{N-1} b^{j} 2^{|a_{j} - a_{j+1}|}} - 2^{|x-y|} + \frac{1}{2^{|x-y|}}$$

$$= 3 - \frac{1}{\sum_{j=1}^{N-1} b^{j} 2^{|a_{j} - a_{j+1}|}} - 2^{|x-y|}.$$
(4)

Since $b \ge 1$ and $x, y \in [1,2]$, then from (4) we obtain

$$3 + f\left(\sum_{j=1}^{N-1} b^{j} \rho(a_{j}, a_{j+1})\right) - f(\rho(x, y)) \ge 3 - \frac{1}{\sum_{j=1}^{N-1} b^{j} 2^{|a_{j} - a_{j+1}|}} - 2^{|x-y|} \ge 2 - 1 - 2 = 0.$$
(5)

So, from (5) we get

$$f(\rho(x,y)) \leq f\left(\sum_{j=1}^{N-1} b^j \rho(a_j,a_{j+1})\right) + 3.$$

Thus, ρ is a function weighted *b*-metric with $b \ge 1$, $f(t) = t + 1 - \frac{1}{t}$, t > 0, and K = 3.

Definition 5. Let (X, ρ) be a function weighted *b*-metric $(F \ b - metric)$ and $p \in X$, then $N_r(p) = \{x \in X \mid \rho(x, p) < r\}$ is called an open neighborhood of p ($F \ b - open \ neighborhood$ of p). $G \subset X$ is called $F \ b - open$ set in X, if for any $y \in G$, there is $N_r(y)$, such that $N_r(y) \subset G$. Furthermore, if K is a $F \ b - open$ in X, then K^c is called $F \ b - closed$ in X.

3. MAIN RESULTS

Theorem 1. Let $(f, K) \in F \times [0, +\infty)$ and (X, ρ) be a function weighted bmetric space (F b – metric space) and $\{a_n\}$ be a sequence in X. If $\rho(a_n, a) \rightarrow 0$, as $n \rightarrow \infty$, and for any G of F b – open set in X containing a, there is a positive integer N, such that for any $n \ge N$, then $a_n \in G$.

Proof. Since $a \in G$ and G open in Fb - metric space X, then there is a open neighborhood $N_r(a)$ such that $N_r(a) \subset G$. Since $\rho(a_n, a) \to 0$, as $n \to \infty$, then there is a positive integer N, such that for any $n \ge N$, we have $\rho(a_n, a) < \frac{1}{2nb}$. Let $N_{\frac{1}{2nb}}(a_n)$ be an open neighborhood of a_n in X. We will show that $N_{\frac{1}{2nb}}(a_n) \subset N_r(a)$. Taking any $x \in N_{\frac{1}{2nb}}(a_n), x \neq a$, we have $\rho(x, a) > 0$, then by using of B3, we obtain

$$f(\rho(x,a)) \le f\left(b(\rho(x,a_n) + \rho(a_n,a))\right) + K$$
$$\le f\left(b\left(\frac{1}{2nb} + \frac{1}{2nb}\right)\right) + K = f\left(\frac{1}{n}\right) + K.$$

$$f(t) < f(r) - K.$$

For the next, we choose a positive integer N, such that for any $n \ge N$, $\frac{1}{n} < \sigma$, then we get

$$f\left(\frac{1}{n}\right) < f(r) - K.$$

So, we get

$$f(\rho(x,a)) < f(r).$$

Since non decreasing monotonic, we obtain $\rho(x, a) < r$. This means $x \in N_r(a)$. So, we get that $N_{\frac{1}{2nb}}(a_n) \subset N_r(a) \subset G$ for any $n \ge N$. So it is proved that for any $n \ge N$, then $a_n \in G$.

Theorem 2. Let $(f, K) \in F \times [0, +\infty)$ and (X, ρ) be a function weighted bmetric space (F b – metric space). Suppose $V_r(p) = \{x \in X | \rho(x, p) \le r\}$, and for any sequence $(a_n) \subset X$ holds a property: For any $\tau > 0$, there exists a positive integer N such that $\rho(a_N, p) < \tau$. Then $V_r(p)$ is a F b –closed in X.

Proof. Let (a_n) be a sequence in $V_r(p)$ that converges (Fb - convergent) to $a \in X$. We show that $a \in V_r(p)$. We have $(a_n) \subset V_r(p)$, this means $\rho(a_n, p) \leq r$. Since r > 0, then there is $\delta > 0$ such that for any $0 < s < \delta$, it holds f(s) < f(r) - K. Likewise, it is true that $\rho(a_N, p) < \frac{\delta}{3b}$ for a non-negative integer N. Since $\lim_{n \to +\infty} \rho(a_n, a) = 0$, then we have $\rho(a_n, a) < \frac{\delta}{3b} < \delta$ for any $n \geq N$. Since $\rho(a, p) > 0$, then by using of B3, then we have

$$f(\rho(a,p)) \le f\left(b(\rho(a,a_N) + \rho(a_N,p))\right) + K < f\left(b\left(\frac{\delta}{3b} + \frac{\delta}{3b}\right)\right) + K$$
$$= f\left(\frac{\delta}{3} + \frac{\delta}{3}\right) + K = f\left(\frac{2\delta}{3}\right) + K < f(r) - K + K = f(r).$$

So, we get $\rho(a, p) \leq r$, this means that $a \in V_r(p)$. Therefore, $V_r(p) F b$ – closed in *X*.

Theorem 3: Let $(f, K) \in F \times [0, +\infty)$ and (X, ρ) be a function weighted b-metric space (F b – metric space). Suppose (a_n) is a sequence in X which satisfies:

$$\rho(a_n, a_{n+1}) \le \frac{c}{b} \rho(a_{n-1}, a_n), \tag{6}$$

where 0 < c < 1. Then (a_n) is Cauchy sequence in F b—metric space X.

Proof. By using iteration of (6), we obtained

$$\rho(a_n, a_{n+1}) \le \frac{c^n}{b^n} \rho(a_0, a_1).$$

So, we have

$$b^n \rho(a_n, a_{n+1}) \le c^n \rho(a_0, a_1).$$
 (7)

Let m > n, then from (7) we get

$$\sum_{i=n+1}^{m} b^{i} \rho(a_{i}, a_{i+1}) \leq \sum_{i=n+1}^{m} c^{i} \rho(a_{0}, a_{1}) \leq \frac{c^{n}}{1-c} \rho(a_{0}, a_{1}).$$
(8)

Since 0 < c < 1, then from (8), if $n \to +\infty$, then $\frac{c^n}{1-c}\rho(a_0, a_1) \to 0$. This means, that for any $\gamma > 0$, there is $N \in \mathbb{N}$ such that for any $n \ge N$ we have

$$0 < \frac{c^n}{1-c}\rho(a_0, a_1) < \gamma.$$
(9)

Since $(f, K) \in F \times [0, +\infty)$, That means *f* is a non-decreasing and logarithmiclike function. So, for every $\varepsilon > 0$ there exists $\gamma > 0$ such that for any $s \in (0, \gamma)$ we have $f(s) < f(\varepsilon) - K$. Therefore, from (8) and (9), and for $m > n \ge N$, we have

$$f\left(\sum_{i=n+1}^{m} b^{i} \rho(a_{i}, a_{i+1})\right) \leq f\left(\frac{c^{n}}{1-c} \rho(a_{0}, a_{1})\right) < f(\varepsilon) - K.$$

$$(10)$$

By using of B3, and (10) we obtain

$$\rho(a_m, a_n) > 0$$
 maka $f(\rho(a_m, a_n)) \le f(\sum_{i=n+1}^m b^i \rho(a_i, a_{i+1}) + K < f(\varepsilon).$

Since f is a non-decreasing function, then $\rho(a_m, a_n) < \varepsilon$ for any $m > n \ge N$. This show that (a_n) is a Cauchy sequence in F b –metric space X.

Theorem 4. Let $(f, K) \in F \times [0, +\infty)$ and (X, ρ) be a complete function weighted b-metric space (complete F b – metric space). Suppose $W_r(a_0) =$ $\{x \in X \mid \rho(x, a_0) \leq r\}$ and $a_1 \in W_r(a_0) \setminus \{a_0\}$ with $\rho(a_0, a_1) < \frac{r(1-c)}{2b^2(r+1)}$, where 0 < c < 1. If (a_n) is a sequence in X, that satisfies (6) and $f\left(\frac{r}{b(r+1)}\right) <$ f(r) - K, then (a_n) is F b - convergent in $W_r(a_0)$. **Proof.** Since $a_0 \in W_r(a_0)$ and $a_1 \in W_r(a_0) \setminus \{a_0\}$, then from (7) we have

$$\rho(a_1, a_2) \le \frac{c}{b} \rho(a_0, a_1) < \frac{c(1-c)r}{2b^3(r+1)}.$$
(11)

Since $\rho(a_0, a_2) > 0$, and using B3 and (11), we have

$$\begin{split} f\big(\rho(a_0, a_2)\big) &\leq f\left(b\big(\rho(a_0, a_1) + \rho(a_1, a_2)\big)\big) + K \\ &\leq f\left(b\left(\frac{r(1-c)}{2b^2(r+1)} + \frac{c(1-c)r}{2b^3(r+1)}\right)\right) + K \\ &= f\left(\frac{r(1-c)}{2b(r+1)} + \frac{cr(1-c)}{2(r+1)b^2}\right) + K \\ &\leq f\left(\frac{r}{2b(r+1)} + \frac{r}{2(r+1)b}\right) + K \\ &= f\left(\frac{r}{b(r+1)}\right) + K \\ &\leq f(r) - K + K = f(r). \end{split}$$

Since f is a non-decreasing function, then $\rho(a_0, a_2) < r$. So, we have $a_2 \in W_r(a_0)$. In the same way, we also have

$$\rho(a_2, a_3) \le \frac{c}{b} \rho(a_1, a_2) \le \left(\frac{c}{b}\right)^2 \rho(a_0, a_1) = \left(\frac{c}{b}\right)^2 \frac{r(1-c)}{2b^2(r+1)}.$$

So, we get

$$\begin{split} f(\rho(a_0, a_3)) &\leq f(b\rho(a_0, a_1) + b^2\rho(a_1, a_2) + b^2\rho(a_2, a_3)) + K \\ &\leq f\left(\left(\frac{r(1-c)}{2b(r+1)} + \frac{cr(1-c)}{2b(r+1)} + \frac{c^2r(1-c)}{2b(r+1)}\right)\right) + K \\ &= f\left(\frac{r(1-c)}{2b(r+1)}(1+c+c^2)\right) + K \\ &= f\left(\frac{r(1-c)}{2b(r+1)}\frac{(1-c^3)}{1-c}\right) + K \\ &= f\left(\frac{r(1-c^3)}{b(r+1)}\right) + K \\ &\leq f\left(\frac{r}{b(r+1)}\right) + K \\ &\leq f(r) - K + K = f(r). \end{split}$$

So, we have

$$f(\rho(a_0, a_3)) \le f(r).$$

It concludes that $a_3 \in W_r(a_0)$.

Thus, in general for n = 1,2,3, ..., we have

$$\rho(a_{n-1}, a_n) \le \left(\frac{c}{b}\right)^{n-1} \frac{r(1-c)}{2b^2(r+1)}$$

and

$$f\left(\rho(a_0, a_n)\right) \le f\left(\frac{r(1-c^n)}{b(r+1)}\right) + K \le f\left(\frac{r}{b(r+1)}\right) + K$$
$$< f(r) - K + K = f(r).$$
(12)

From (12), it is obtained $\rho(a_0, a_n) < r$. Thus, we have

 $a_n \in W_r(a_0)$, for every n = 1, 2, 3, (13)

Since by using Theorem 3 and (13), we have that (a_n) , is a Cauchy sequence in $W_r(a_0)$. Then, by using Theorem 2, we have $W_r(a_0)$ is closed. Since X is complete, then (a_n) is convergent in F b –metric space X. Since $W_r(a_0)$ is a closed, and $a_n \in W_r(a_0)$, then (a_n) is a F b -convergent in $W_r(a_0)$.

Theorem 5. Suppose $(f, K) \in F \times [0, +\infty)$ and let (X, ρ) be a complete function weighted b-metric space (F b – metric space). If (a_n) is a convergent sequence in F b- metric space X, then the limit of (a_n) is unique.

Proof. Suppose $\lim_{n\to+\infty} \rho(a_n, a^*) = 0$, $\lim_{n\to+\infty} \rho(a_n, s^*) = 0$, and $a^* \neq s^*$. Since $\rho(a^*, s^*) > 0$, then from of B3, we have

$$f(\rho(a^*, s^*)) \le f\left(b(\rho(a^*, a_n) + \rho(a_n, s^*))\right) + K.$$

$$(14)$$

Since $\lim_{n\to+\infty} \rho(a_n, a^*) = 0$ and $\lim_{n\to+\infty} \rho(a_n, s^*) = 0$, then we have

$$b(\rho(a^*, a_n) + \rho(a_n, s^*)) \to 0$$
, as $n \to +\infty$

Then from (14) and by using the logarithmic-like property of f, we get

$$\lim_{n\to\infty}f(c\rho(a^*,a_n)+b\rho(a_n,s^*))+K=-\infty,$$

which is a contradiction.

Theorem 6. Suppose $(f, K) \in F \times [0, +\infty)$ and let (X, ρ) be a function weighted b-metric space. If $\lim_{t\to+\infty} f(t) = +\infty$, then for any t > 0 there exists M > t such that f(t) < f(M) - K.

Proof. Since $f \in F$ and $\lim_{t\to+\infty} f(t) = +\infty$, we have f no-deceasing, logarithmic –like, and upper unbounded. Suppose there exists M > 0 such that for any s > M, it holds $f(M) \ge f(s) - K$. So, we have $f(s) \le f(M) + K$. Which is a contradiction, because f is not upper bounded.

Theorem 7. Suppose $(f, K) \in F \times [0, +\infty)$ and let (X, ρ) be a function weighted b-metric space. If $\lim_{t\to+\infty} f(t) = +\infty$ and $(a_n) \subset X$ is a Cauchy sequence in F b—metric space, then (a_n) is bounded in X.

Proof. Suppose (a_n) is a Cauchy sequence, then there is a positive integer N, such that $\rho(a_n, a_N) < \frac{1}{b}$ for any $n \ge N$. Let $c \in \Re$ and

$$L = maks \left\{ b\rho(a_1, a_N), b\rho(a_2, a_N), \dots, b\rho(a_{N-1}, a_N), \frac{1}{b} \right\}.$$

For $\rho(a_n, c) > 0$, then using B3, we get

$$f(\rho(a_n,c)) \le f\left(b(\rho(a_n,a_N) + \rho(a_N,c))\right) + K$$
$$\le f\left(b(L + \rho(a_N,c))\right) + K.$$
(15)

From Theorem 6, and since $\lim_{t\to+\infty} f(t) = +\infty$ and f non-decreasing, then there is $M > L + b\rho(a_N, c) > 0$ such that $f((L + b\rho(a_N, c))) < f(M) - K$. So, from (15) we have

$$f(\rho(a_n,c)) \leq f((L+b\rho(a_N,c))) + K < f(M).$$

Since f is a non-decreasing, we get $\rho(a_n, c) < M$, for every n = 1, 2, 3, ... Thus (a_n) is bounded in X.

Next, we will show that (X, ρ)) which is a weighted *b*-metric function, is also a metrizable space, this is shown in the following theorem.

Theorem 8. Suppose $(f, K) \in F \times [0, +\infty)$ and let (X, ρ) be a function weighted b-metric space. If $d(x, y) = \inf_{N \in \mathbb{N}} \{ \sum_{j=1}^{N-1} b^j \rho(a_j, a_{j+1}) \mid (a_n) \subset X, a_1 = 0 \}$ $x, a_N = y$, $N \ge 2$, then d is a metric on X. Furthermore, (a_n) converges to a in (X, ρ) if and only if (a_n) converges to a in metric space (X, d).

Proof. Since for any $x \in X$, $\rho(x, x) = 0$, then from definition of d, we have d(x, x) = 0. For all $x, y \in X$ with $x \neq y$, we will show that d(x, y) > 0. Suppose d(x, y) = 0. By using definition of the infimum, then for any $\varepsilon > 0$, there exists a positive integer M such that

$$\sum_{j=1}^{M-1} b^j \rho(a_j, a_{j+1}) < \varepsilon.$$

Since f no-decreasing, then we have

$$f\left(\sum_{j=1}^{M-1} b^{j} \rho(a_{j}, a_{j+1})\right) \leq f(\varepsilon).$$
(16)

Since $\rho(x, y) > 0$, then by using of B3, we have

$$f(\rho(x,y)) < f\left(\sum_{j=1}^{M-1} b^{j} \rho(a_{j}, a_{j+1})\right) + K.$$
(17)

From (16) and (17) we obtain

$$f(\rho(x, y)) < f(\varepsilon) + K.$$
(18)

However, from the logarithmic-like property of f, if $\varepsilon \to 0$, then we have $f(\varepsilon) \to -\infty$. It implies that $f(\varepsilon) + K \to -\infty$. It is a contradiction of (18). Thus, it concludes if $x \neq y$, d(x, y) > 0.

For condition 2 of metric, from definition of *d*, it is clear that d(x, y) = d(y, x). To check that condition 3 metric, it can be shown as follows: Let $(a_n) \subset X$, $a_1 = x, a_2, ..., a_s = y$ and $a_s = y, a_{s+1}, ..., a_N = z$. From the definition of *d*, then for every $\varepsilon > 0$, there exists $a_1 = x, a_2, ..., a_s = y$ and $a_s = y, a_{s+1}, ..., a_N = z$ such that

$$\sum_{j=1}^{s-1} b^{j} \rho(a_{j}, a_{j+1}) < d(x, y) + \varepsilon_{j}$$

and

$$\sum_{j=s}^{N-1} b^j \rho(a_j, a_{j+1}) < d(y, z) + \varepsilon.$$

So we have

$$d(x,z) = \inf_{N \in \mathbb{N}} \left\{ \sum_{j=1}^{N-1} b^j \rho(a_j, a_{j+1}) \mid (a_n) \subset X, a_1 = x, a_N = z, N \ge 2 \right\}$$

$$\leq \sum_{j=1}^{N-1} b^j \rho(a_j, a_{j+1}) = \sum_{j=1}^{S-1} b^j \rho(a_j, a_{j+1}) + \sum_{j=S}^{N-1} b^j \rho(a_j, a_{j+1})$$

$$< d(x,y) + d(y,z) + 2\varepsilon.$$
(19)

Since $\varepsilon > 0$ is arbitrary, then from (19) we get

$$d(x,z) \le d(x,y) + d(y,z).$$

Thus, (X, ρ) is a metrizable by the metric *d*.

Next, it will be shown (a_n) converges to a in (X, ρ) if and only if (a_n) converges to a in (X, d). Let (a_n) converges to a in (X, ρ) , It means for every $\varepsilon > 0$, there is a positive integer N, such that for any $n \ge N$, $\rho(a_n, a) < \varepsilon$. So, from the definition of d, we have

$$d(a_n,a) \leq \rho(a_n,a) < \varepsilon.$$

Thus, (a_n) converges to a in (X, d). Converse, let (a_n) converges to a in (X, d). It means for every $\varepsilon > 0$, there is a positive integer N, such that for any $n \ge N$, $d(a_n, a) < \varepsilon$. From the definition of d, for $\delta > 0$ then there will be a positive integer M such that

$$\sum_{j=1}^{M-1} b^{j} \rho(x_{j}, x_{j+1}) < \delta.$$

So, we have

$$f\left(\sum_{j=1}^{M-1} b^{j} \rho(x_{j}, x_{j+1}))\right) < f(\varepsilon) - K.$$
(20)

From $\rho(a_n, a) > 0$, and of B3 we have

$$f(\rho(a_n, a)) \le f\left(\sum_{j=1}^{M-1} b^j \rho(x_j, x_{j+1}))\right) + K,$$
(21)

where $x_1 = a_n$, $x_M = a$, $M \ge 2$. From (20) and (21), we obtain

$$f(\rho(a_n, a)) < f(\varepsilon).$$

Thus, we have $\rho(a_n, a) < \varepsilon$, for any $n \ge N$. It concludes that (a_n) converges to a in (X, ρ) .

ACKNOWLEDGEMENT.

Thanks to all colleagues, especially my friends in the Mathematics Department, Hasanuddin University, Makassar, which has supported this research of the generalized metric space.

REFERENCES

- Bakhtin, I. A., *The contraction mapping principle in quasi- metric spaces*, Funct. Anal. UnianowskGos. Ped. Inst., 30, 1989, 26-37.
- [2] Czerwik, S., Contraction mappings in b -metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), 1993, 5-11.
- [3] Dung, N. V., *The metrization of rectangular b-metric spaces*, Topology and its Applications, 261 (2019), 22-28.
- [4] George, R., Radenovic, S., Reshma, K. P., and Shukla, S., *Rectangular b-metric space and contraction principles*, J. Nonlinear Sci. Appl., 8 (2015), 1005-1013.
- [5] Branciari, A., A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37.
- [6] Asim, M., Imdad, M., and Radenovic, S., *Fixed point results in extended rectangular b-metric spaces with an Application*, University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 81(2) (2019), 43-50.
- [7] Cobzas, S. and Czerwik, S., *The completion of generalized b-metric spaces and fixed points*, Fixed Point Theory, **21**(1) (2020), 133-150.

[8] Jleli, M. and Samet, B., On a new generalization of metric spaces, Journal of Fixed Point Theory and Applications, 20(3) (2018), 1-20.
